Quadratic Mixed Finite Element Approximations of the Monge-ampère Equation in 2d

نویسنده

  • GERARD AWANOU
چکیده

We give error estimates for a mixed finite element approximation of the two-dimensional elliptic Monge-Ampère equation with the unknowns approximated by Lagrange finite elements of degree two. The variables in the formulation are the scalar variable and the Hessian matrix.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Standard Finite Elements for the Numerical Resolution of the Elliptic Monge-ampère Equation: Mixed Methods

We prove a convergence result for a mixed finite element method for the Monge-Ampère equation to its weak solution in the sense of Aleksandrov. The unknowns in the formulation are the scalar variable and the Hessian matrix.

متن کامل

Finite Element Approximations of the Three Dimensional Monge-ampère Equation

In this paper, we construct and analyze finite element methods for the three dimensional Monge-Ampère equation. We derive methods using the Lagrange finite element space such that the resulting discrete linearizations are symmetric and stable. With this in hand, we then prove the wellposedness of the method, as well as derive quasi-optimal error estimates. We also present some numerical experim...

متن کامل

Mixed Finite Element Methods for the Fully Nonlinear Monge-Ampère Equation Based on the Vanishing Moment Method

This paper studies mixed finite element approximations of the viscosity solution to the Dirichlet problem for the fully nonlinear Monge–Ampère equation det(D2u0) = f (> 0) based on the vanishing moment method which was proposed recently by the authors in [X. Feng and M. Neilan, J. Scient. Comp., DOI 10.1007/s10915-008-9221-9, 2008]. In this approach, the second-order fully nonlinear Monge–Ampèr...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Analysis of High-order Approximations by Spectral Interpolation Applied to One- and Two-dimensional Finite Element Method

The implementation of high-order (spectral) approximations associated with FEM is an approach to overcome the difficulties encountered in the numerical analysis of complex problems. This paper proposes the use of the spectral finite element method, originally developed for computational fluid dynamics problems, to achieve improved solutions for these types of problems. Here, the interpolation n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014